skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Shiyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Intensity Diffraction Tomography (IDT) is a new computational microscopy technique providing quantitative, volumetric, large field-of-view (FOV) phase imaging of biological samples. This approach uses computationally efficient inverse scattering models to recover 3D phase volumes of weakly scattering objects from intensity measurements taken under diverse illumination at a single focal plane. IDT is easily implemented in a standard microscope equipped with an LED array source and requires no exogenous contrast agents, making the technology widely accessible for biological research.Here, we discuss model and learning-based approaches for complex 3D object recovery with IDT. We present two model-based computational illumination strategies, multiplexed IDT (mIDT) [1] and annular IDT (aIDT) [2], that achieve high-throughput quantitative 3D object phase recovery at hardware-limited 4Hz and 10Hz volume rates, respectively. We illustrate these techniques on living epithelial buccal cells and Caenorhabditis elegans worms. For strong scattering object recovery with IDT, we present an uncertainty quantification framework for assessing the reliability of deep learning-based phase recovery methods [3]. This framework provides per-pixel evaluation of a neural network predictions confidence level, allowing for efficient and reliable complex object recovery. This uncertainty learning framework is widely applicable for reliable deep learning-based biomedical imaging techniques and shows significant potential for IDT. 
    more » « less
  2. Coherent imaging through scatter is a challenging task. Both model-based and data-driven approaches have been explored to solve the inverse scattering problem. In our previous work, we have shown that a deep learning approach can make high-quality and highly generalizable predictions through unseen diffusers. Here, we propose a new deep neural network model that is agnostic to a broader class of perturbations including scatterer change, displacements, and system defocus up to 10× depth of field. In addition, we develop a new analysis framework for interpreting the mechanism of our deep learning model and visualizing its generalizability based on an unsupervised dimension reduction technique. We show that our model can unmix the scattering-specific information and extract the object-specific information and achieve generalization under different scattering conditions. Our work paves the way to arobustandinterpretabledeep learning approach to imaging through scattering media. 
    more » « less
  3. null (Ed.)
    Traditional imaging cytometry uses fluorescence markers to identify specific structures but is limited in throughput by the labeling process. We develop a label-free technique that alleviates the physical staining and provides multiplexed readouts via a deep learning–augmented digital labeling method. We leverage the rich structural information and superior sensitivity in reflectance microscopy and show that digital labeling predicts accurate subcellular features after training on immunofluorescence images. We demonstrate up to three times improvement in the prediction accuracy over the state of the art. Beyond fluorescence prediction, we demonstrate that single cell–level structural phenotypes of cell cycles are correctly reproduced by the digital multiplexed images, including Golgi twins, Golgi haze during mitosis, and DNA synthesis. We further show that the multiplexed readouts enable accurate multiparametric single-cell profiling across a large cell population. Our method can markedly improve the throughput for imaging cytometry toward applications for phenotyping, pathology, and high-content screening. 
    more » « less